Award Winning Solar Energy Installation

Home >> Residential >> Massachusetts >> Holyoke >> Homes With Solar Panels

In Home Energy Audit
Affordable Pricing

Going Solar Is Now Affordable

Our Experienced Solar Consultants Help You Design The Perfect Solution

From examining your current eletrical usage and costs to assisting with the correct financing plan, you will receive a custom designed solar energy plan which suits you and your family.

What Our Customers are Saying

"We found all of the employees with whom we in contact from the sales representative to the installers to be knowledgeable and professional. All our questions were answered satisfactorily which is why we decided panels installed. We were also impressed with the company’s A+ rating by the Better Business Bureau.” – Pat S. – Boston

"Our first two bills were approximately $300.00 less than before and our third bill, just received was down about $250.00 from what we were paying! We think it is fantastic!" - William R. - Waltham MA

"They did a wonderful job on my system and I would recommend them to my family and friends!" - Georg S. - Chicopee MA

I cannot express my gratitude for going forward with solar panels. From the initial meeting to discuss the possibility to the techs who eventually installed them. But most of all, it is the savings we have experienced. That first month was unbelievable. Solar plus our other electric source combined was less than our usual monthly expense. During the summer when our electric usage is higher because of the air conditioning, our monthly expense was still less than what we have paid with past summer usage. And if that’s not enough…our present electricity is primarily supplied by the solar panels. We have been building up a reserve with our other electricity source and will be able to draw from that all winter when our panels wont’t generate as much electricity. It’s a win-win situation that we’re just thrilled over. Having a fixed rate locked in is another great feature for savings.” – Virgil T. – Westport MA

Our Services

Ready To Go Solar?

  • Fully licensed & insured installers
  • Custom tailored solutions
  • Free in home consultations
  • Easy financing options
  • 20 year warranty
  • Transparent contracts
  • Eco-friendly
  • State and federal incentives
  • Roof repair if damaged during installation
  • Customer service is our top priority

About Solar Energy

Solar power is energy from the sun that is transformed into thermal or electrical energy.

Solar energy is the cleanest and most abundant renewable resource source available, and the United States has some of the richest solar resources worldwide. Modern innovation can harness this energy for a variety of usages, consisting of producing electricity, supplying light or a comfortable interior environment, and heating water for domestic, commercial, or industrial usage.

Solar Benefits

Solar power makes it possible for homeowner to utilize the sun to power everyday life: running your a/c, cleaning clothing, watching TELEVISION, cooking dinner. All while decreasing your carbon footprint, and without burning fossil fuels or putting a strain on the electrical grid. And while the ecological benefits of solar power are significant, many residents discover that the benefit, special features, and expense savings of owning a solar power system are much more enticing.

Top 10 Benefits of Solar Energy

#1 Considerably decrease or perhaps eliminate your electrical bills

Whether you're a property owner, service, or nonprofit, electricity costs can comprise a large portion of your monthly costs. With a photovoltaic panel system, you'll generate totally free power for your system's whole 25+ year lifecycle. Even if you don't produce One Hundred Percent of the energy you consume, solar will lower your energy expenses and you'll still conserve a great deal of cash.

#2 Make a fantastic return on your financial investment

Solar panels aren't an expenditure-- they are among the very best methods to invest, with returns measuring up to those of more conventional investments like stocks and bonds. Thanks to substantial electricity bill savings, the average American homeowner pays off their photovoltaic panel system in seven to 8 years and sees an ROI of 20 percent or more.

#3 Secure versus rising energy expenses

Among the most clear cut advantages of solar panels is the capability to hedge energy prices. In the previous 10 years, domestic electrical energy rates have actually increased by approximately three percent every year. By investing in a solar energy system now, you can fix your electricity rate and safeguard versus unforeseeable boosts in electricity expenses. If you're a business or house owner with ever-changing cash circulation, going solar likewise helps you much better forecast and handle your costs.

#4 Boost your house value

Multiple studies have discovered that homes geared up with solar energy systems have higher residential or commercial property values and offer faster than non-solar houses. Appraisers are increasingly taking solar installations into factor to consider as they value homes at the time of a sale, and as property buyers end up being more informed about solar, need for homes geared up with photovoltaic panel systems will continue to grow.

#5 Boost U.S. energy independence

The sun is a near-infinite source of energy and a key part of achieving energy independence in the United States. By increasing our capacity to produce electricity from the sun, we can likewise insulate our country from price fluctuations in global energy markets.

#6 Create jobs and assist your local economy

Inning accordance with The Solar Structure, the solar market added tasks at a rate almost 12 times faster than the general U.S. economy in 2015, representing 1.2 percent of all tasks in the country. This development is anticipated to continue. Because solar-related tasks have the tendency to be higher paying and can not be outsourced, they are a significant contributor to the U.S. economy.

#7 Secure the environment

Solar is an excellent way to minimize your carbon footprint. Structures are responsible for 38 percent of all carbon emissions in the U.S., and going solar can considerably reduce that number. A common property photovoltaic panel system will eliminate 3 to 4 lots of carbon emissions each year-- the equivalent of planting over 100 trees every year.

#8 Show your commitment to sustainability

Sustainability and business social duty are very important parts of an organization's culture and values. They likewise produce bottom line outcomes. Increasingly, consumers and neighborhoods are acknowledging and rewarding services that select to operate responsibly. Organisations are finding that "green" qualifications are a powerful driver of customer getting decisions, producing goodwill and improving company outcomes.

#9 Start Saving from Day 1

Solar purchase power contracts (PPAs) and solar leasing has actually made it possible for property owners to go solar for little or no loan down.

Many property owners pick to fund their solar panels with one of the "pay-as-you-go" financing options. This implies that a third-party company-- the solar company-- owns the planetary system and takes care of installation, upkeep, monitoring and repair works. You merely pay the solar supplier for electrical power-- less than you would've paid the utility company.

As of June 2013, 75% of all American homes have access to pay-as-you-go solar.

#10. Solar is a Secure Investment

The energy companies are notorious for their fluctuating and unreliable electrical power prices. There is clearly an upward trend.

With solar panels and easy math, we can calculate what does it cost? electrical power will be generated, and most notably, at what price, for a minimum of the next Twenty Years (repaired energy expenses).


What are the various payment options?

We have many flexible purchasing agreements for customers who would like to install a new home solar system. There are three different payment options, making them a viable choice for customers of all budgets. The payment options include Lease, PPA, and Purchase.

The Lease

  • Low, fixed payments each month
  • System insurance for 20 years, including maintenance
  • Flexible end-of-term options, including system upgrade, lease extension, and free panel removal

Power Purchase Agreement (PPA)

  • We own the solar panel system
  • $0 down for installation
  • Customers only pay for the solar energy that they use


  • Customer pays for the system upfront and owns the system
  • System monitoring and maintenance for 20 years
  • Receive 30% federal tax credit
  • See a return on investment within 7-10 years

What happens when the contract for my lease is finished?

We provide our customers with a few different options for when their lease contract is up. Customers can upgrade their equipment to the newest solar technology available, extend the agreement, or have the panels removed at no cost.

What is the warranty?

The Lease and PPA include a 20-year warranty during the lifetime of the system. This warranty exceeds that of most other solar installers’ warranties.

Frequently Asked Questions

What Kind Of Rays Are Used In Solar Panels?

Electromagnetic...meaning light rays, primarily in the visible spectrum. Ultraviolet and infrared light rays actually degrade most types of solar panels, limiting their useful lifetime.

That said, your question is not stated I'm not sure if that's the information you were looking for. Rays are not used "in" solar panels...rather solar panels are used to collect sunlight and convert it to energy--either directly into heat in the case of passive solar, or into electricity by the use of photovoltaic cells.

When / How Is Solar Power Going To Be Cost-Competitive With Today'S Common Energy Sources?

Actually this depends on where you live, and how much electricity you use.
obviously if you live in an area that has a lot of mostly sunny days, the Solar panels are more cost effective than where I live.
where I live we get 80 to 100 inches of rain a year, so we only get about 75 non-rainy or cloudy, or foggy days a year.
also our utility company is a Co=op, so our energy bills are reasonably low.

however if you live in say Ca. either central or southern, with rebates and incentives, you should be able to recoup the cost of you solar panels in 15 years or less.

This site should give you insight into cost and other related benefits.

Can We Reduce The Cost To Produce Solar Panels Used To Produce Electricity?
Global Warming Is Our Present Problem, One Cause Is The Use Of Fossil Fuel To Produce Electricity And The Exhaust Of Vehicles. If We Can Produce More Electricity Using Solar Power And Convert Some Automobiles To Use Electricity Maybe The Warming Maybe Controlled.

Yes, but it will likely take many years of research and development to get to something to provide the amount of energy currently provided by fossil fuel. Electric power for automobiles is a good idea, but remember most of the electricity is created in a power plant that burns fossil fuels. The only technology that is out there that is a viable replacement for fossil fuels is nuclear fission.

To truly reduce greenhouse gases in a rapid manner, investment in nuclear power and nuclear waste reuse is where we need to be headed. Biofuels, wind, solar are part of the equation, but they will be a smaller part.

New Advancement In Solar Panels...Half The Cost Of Silicone.?
Has Anyone Heard Of Or Researched The New Solar Panel Design Of Using Cadmium Telluride Instead Of Silicone In Solar Panels. Supposedly Half The Cost. A Company Called Ava Solar, Through Research At Colorado State Is Developing Them. Http://Welcome.Colostate.Edu/Features/Ava-Solar.Aspx Sounds Very Exciting And Enormous Potential.

Yes, thin film solar cells are expected to reduce the cost of solar power to the point that it can compete with coal and oil. We are talking about reducing the cost to manufacture a cell than can make 1 watt of power in full sunlight from $3 to $1. I am told that $3 per watt is already competitive in Japan where coal and oil are all imported, but most of the rest of the world needs $1 per watt to make it worth while. Many companies are working on thin film solar cells. Many many. It is not just one company working on one kind of thin film solar cell technology.

What Capacity Solar Panel Do I Need To Charge Batteries With A Total Capacity Of 25,000 Mahours In 8 Hours?
I Have Four Power Packs For Solar Lights. They Have 3 Aa 1.2Volt Batteries Of 2450 Mah Capacity Installed In Series For A Total Supply Voltage Of 4 Volt Maximum For The Lights. I Want To Charge All Four Packs At Once Off A Single 6 Volt Solar Panel. With The Four Packs Wired In Parallel, What Capacity Output (Wattage) Panel Do I Need To Charge The Batteries In An 8 Hour Day?

Each battery has 3 cells so the voltage is 3.6V. The maximum required charge voltage is about 4.4V. The capacity of the 4 packs is 2450 * 4 = 9800 mAh. The charge takes around 1.4 times as much, so 9.8Ah * 1.4 = 13.8Ah is required from the solar panel. To charge in 8 hour day the hours of equivalent full sun are required for the location. This is up to 5h in the tropics and as little as 2h in the higher temperate zones. Lets say it is 3h for your location. (That would be ok for Sydney in winter I think).

This means the sunlight during the whole day is the equivalent of 3h @ 1000W/m², which is what the panels are rated at. Therefore the charging needs 13.8Ah in 3 hours. But... panels are specified at 25°C, but might reach 60°C in the sun. The output can be 80% of the rated output power therefore. The rated Ah is now 13.8 / 0.8 = 17.25Ah. The rated current is 17.25Ah / 3h = 5.75A panel. The available 6V panels may be much less current than this, but choosing less will mean it takes longer. If a 6A panel is needed for 1 day, then a 1 amp panel will take 6 days etc. It seems you may have to use a 12V panel to get appropriate current.

On voltage, if the panels are intended for a 6V lead acid battery, they would have 18 cells, produce about 11V on no load, and about 7.5V at rated load current. This is fine for charging your batteries. A 12V panel is double these figures, and seems the only way to get a big enough panel to provide enough current to charge 4 packs in one day. It is possible to use an efficient converter to reduce the voltage and increase the current, so a 12V to 6V converter would help. The 12V panel then needs to be 3A only, providing 6A at 6V (still 36W).

The batteries are charged by current, and the charge terminates when the charge is sufficient. There are various algorithms for determining this with Nimh cells. The first link explains. As these batteries are mostly charged in a 3h period they are fast charged. A way to determine end of charge is needed. Time is not suitable as the charge amount is not known properly, and the battery state may not be known either. The ΔV charging method or the ΔT charging methods are popular. The temperature should be monitored anyway. Maximum is usually rated at 45 degrees. These methods need a specialised charger - a charger for each pack (that is 4 of them). The chargers are for a 3 AA cell Nimh battery. Because the charging supply is vague, we should adjust maximum charge current to 1/4 of the rated panel current, which might be 1.5A. This is close to the 2 hour rate. However it will be inherently limited by what the panel can provide with the sunlight available at any instant.

I could not find suitable charger devices for this. The problems arise because you want to charge all these in one day (actually a few hours). The second link shows a basic charger for 1 battery using a 12V panel, but this device needs plenty of heat sink (15W maybe) and wastes a lot of power. Also it is completely dumb. You remove the battery when you think it is charged. A suitable system needs a microprocessor or something to determine the change in temperature or voltage for automatic control, and a switch mode method of controlling voltage/current for best efficiency.

The alternative is to go with what the market has, get 4 small 250mA 6V panels. These can connect to the 4 batteries directly with no charger, but with take 14 hours of full sun equivalent for a full charge typically, so several days.

The third link shows an electronic device that could make a suitable charger. This still needs one per battery, and if a 12V panel is used on its own, some way to limit the voltage from the panel, as this device is maximum 16.5V, while a 12V panel is up to 22V. It would work well with a large 6V panel if you can find such a thing. It makes sense to charge a 12V battery with a 12V panel, and use this 12V to power these or some other chargers. Then you can charge the lamps any time of the day.

We Serve All of Holyoke MA including these zip code areas:

01040, 01041